Las acciones formativas de Formacioncontinua tienen modalidad online
Modalidad
Online
Duración de las acciones formativas de formacioncontinua
Duración Total
1500 H
Duración de teleformación de las acciones formativas de formacioncontinua
Horas Teleformación
450 H
Precio de las acciones formativas de INESEM
Entidad
INESEM Business School
Presentación

Descripción
La creciente cantidad de datos y el desarrollo del Internet de las Cosas (IoT), hacen cada vez más presentes los conceptos de Big Data y Business Intelligence en los entornos empresariales, donde el científico de datos tiene un papel fundamental. Gracias a este Master en Big Data y Business Intelligence. Data Science podrás ponerte a la vanguardia en el uso de nuevas tecnologías y métodos de análisis de datos que te permitan desarrollar las habilidades analíticas necesarias para extraer y evaluar los datos de una manera eficaz logrando una toma de decisiones estratégicas y optimización de costes.Contarás con un equipo de profesionales especializados en la materia. Además, gracias a las prácticas garantizadas, podrás acceder a un mercado laboral en plena expansión.

Objetivos
  • Entender la importancia del uso del Big Data y el Business Intelligence para la toma de decisiones estratégicas.
  • Aprender a utilizar herramientas de Big Data como Weka, Talen Open Studio o el ecosistema Hadoop.
  • Utilizar bases de datos NoSQL con MongoDB y SQL con MySQL y aprender los lenguajes Python y R para Data Science.
  • Saber utilizar y aplicar correctamente las principales técnicas de Data Mining y Storytelling.
  • Crear visualizaciones de datos profesionales con herramientas como Power BI, Tableau o Qlikview.
  • Utilizar las principales técnicas y métricas en Analítica web gracias a Google Analytics 4 o Google Tag Manager.
  • Explotar las tecnologías de Inteligencia artificial, Machine Learning y Deep Learning así como la visión artificial.

Para qué te prepara
Con el Máster en Business Intelligence y Big Data. Data Science usarás herramientas Big Data como Weka, Talend o Hadoop. Utilizarás MongoDB y MySQL para gestionar bases de datos, Python y R para el análisis de datos y Power BI o Tableau para la visualizacion de información. Conocerás y aplicarás algoritmos de Inteligencia artificial, Machine learning y visión artificial. Por último, usarás Google Analytics para el análisis web.

A quién va dirigido
El Máster en Business Intelligence y Big Data. Data Science está dirigido a técnicos informáticos, analistas de datos, estadísticos o, en general, a profesionales de cualquier sector que quieran aprender las tecnologías, algoritmos y herramientas más avanzadas para analizar y explotar datos. También es idónea para estudiantes que estén interesados en estas temáticas.

temario

  1. ¿Qué es Big Data?
  2. ¿Y Thick Data? ¿Cuál es el matiz para diferenciar ambos términos?
  3. El gran auge del big data
  4. La importancia de almacenar y extraer información
  5. ¿Cual es el papel de las fuentes de datos?
  6. Soluciones novedosas gracias a la selección de datos
  7. Naturaleza de las fuentes de datos Big Data
  1. Thick Data, el valor de lo cualitativo. Entender emociones humanas, intenciones y sentimientos
  2. Fases en un proyecto de Big Data
  3. Big Data enfocado a los negocios
  4. Apoyo del Big Data en el proceso de toma de decisiones
  5. Toma de decisiones operativas
  1. Marketing estratégico y Big Data
  2. Open data
  3. Ejemplo de uso de Open Data
  4. IoT (Internet of Things-Internet de las cosas)
  1. Relación entre inteligencia artificial y big data
  2. IA y Big Data combinados
  3. El papel del Big Data en IA
  4. Big Data en salud
  5. Necesidad de Big Data en la asistencia sanitaria
  6. Retos del big data en salud
  7. Big Data y People Analytics en RRHH
  1. Definiendo el concepto de Business Intelligence y sociedad de la información
  2. Arquitectura de una solución Business Intelligence
  3. Business Intelligence en los departamentos de la empresa
  4. Conceptos de Plan Director, Plan Estratégico y Plan de Operativa Anual
  5. Sistemas Operacionales y Procesos ETL en un sistema de BI
  6. Ventajas y Factores de Riesgos del Business Intelligence
  1. Cuadros de Mando Integrales (CMI)
  2. Sistemas de Soporte a la Decisión (DSS)
  3. Sistemas de Información Ejecutiva (EIS)
  1. Introducción a la minería de datos y el aprendizaje automático
  2. Proceso KDD
  3. Modelos y Técnicas de Data Mining
  4. Áreas de aplicación
  5. Minería de Textos y Web Mining
  6. Data mining y marketing
  1. Aproximación al concepto de DataMart
  2. Bases de datos OLTP
  3. Bases de Datos OLAP
  4. MOLAP, ROLAP & HOLAP
  5. Herramientas para el desarrollo de cubos OLAP
  1. Visión General: ¿Por qué DataWarehouse?
  2. Estructura y Construcción
  3. Fases de implantación
  4. Características
  5. Data Warehouse en la nube
  1. Contexto Internet de las Cosas (IoT)
  2. ¿Qué es IoT?
  3. Elementos que componen el ecosistema IoT
  4. Arquitectura IoT
  5. Dispositivos y elementos empleados
  6. Ejemplos de uso
  7. Retos y líneas de trabajo futuras
  1. ¿Qué es el Data Storytelling?
  2. Elementos clave del Data Storytelling
  3. ¿Por qué es importante el Data Storytelling?
  4. ¿Cómo hacer Data Storytelling?
  1. ¿Qué es Hadoop? Relación con Big Data
  2. Instalación y configuración de insfraestructura y ecosistema Hadoop
  3. Sistema de archivos HDFS
  4. MapReduce con Hadoop
  5. Apache Hive
  6. Apache Hue
  7. Apache Spark
  1. ¿Qué es BPM?
  2. Efecto silo
  3. Ventajas flujo de trabajo
  4. ¿Qué es talend?
  1. Introducción Talend
  2. ¿Qué es el proceso ETL?
  3. Instalación Talend
  1. Usando Talend Studio
  2. Leer un archivo
  3. Ordenar un archivo
  1. Crear y usar mMetadata
  2. Filtrar datos usando el componente tMap
  3. Unir dos fuentes de datos con el componente tMap
  1. Configurando uniones en tMap
  2. Añadir filtros basados en condiciones en tMap
  1. Usar variables de contexto
  2. Crear metadatos de conexión de cluster
  3. Crear metadatos de conexión de cluster desde archivos de configuración
  1. Escribiendo y leyendo datos en HDFS
  2. Iniciando un trabajo en Spark
  3. Iniciando un trabajo en YARN
  1. ¿Qué es la ciencia de datos?
  2. Herramientas necesarias para el científico de datos
  3. Data Science & Cloud Computing
  4. Aspectos legales en Protección de Datos
  1. Introducción
  2. El modelo relacional
  3. Lenguaje de consulta SQL
  4. MySQL Una base de datos relacional
  1. ¿Qué es una base de datos NoSQL?
  2. Bases de datos Relaciones Vs Bases de datos NoSQL
  3. Tipo de Bases de datos NoSQL Teorema de CAP
  4. Sistemas de Bases de datos NoSQL
  1. ¿Qué es MongoDB?
  2. Funcionamiento y uso de MongoDB
  3. Primeros pasos con MongoDB: Instalación y shell de comandos
  4. Creando nuestra primera Base de Datos NoSQL: Modelo e Inserción de Datos
  5. Actualización de datos en MongoDB: Sentencias set y update
  6. Trabajando con índices en MongoDB para optimización de datos
  7. Consulta de datos en MongoDB
  1. ¿Qué es Weka?
  2. Técnicas de Data Mining en Weka
  3. Interfaces de Weka
  4. Selección de atributos
  1. Una aproximación a PENTAHO
  2. Soluciones que ofrece PENTAHO
  3. MongoDB & PENTAHO
  4. Hadoop & PENTAHO
  5. Weka & PENTAHO
  1. Introducción a R
  2. ¿Qué necesitas?
  3. Tipos de datos
  4. Estadística Descriptiva y Predictiva con R
  5. Integración de R en Hadoop
  1. Obtención y limpieza de los datos (ETL)
  2. Inferencia estadística
  3. Modelos de regresión
  4. Pruebas de hipótesis
  1. Inteligencia Analítica de negocios
  2. La teoría de grafos y el análisis de redes sociales
  3. Presentación de resultados
  1. ¿Qué es la visualización de datos?
  2. Importancia y herramientas de la visualización de datos
  3. Visualización de datos: Principios básicos
  1. ¿Qué es Tableau? Usos y aplicaciones
  2. Tableau Server: Arquitectura y Componentes
  3. Instalación Tableau
  4. Espacio de trabajo y navegación
  5. Conexiones de datos en Tableau
  6. Tipos de filtros en Tableau
  7. Ordenación de datos, grupos, jerarquías y conjuntos
  8. Tablas y gráficos en Tableau
  1. Fundamentos D3
  2. Instalación D3
  3. Funcionamiento D3
  4. SVG
  5. Tipos de datos en D3
  6. Diagrama de barras con D3
  7. Diagrama de dispersión con D3
  1. Visualización de datos
  2. Tipologías de gráficos
  3. Fuentes de datos
  4. Creación de informes
  1. Instalación y arquitectura
  2. Carga de datos
  3. Informes
  4. Transformación y modelo de datos
  5. Análisis de datos
  1. Introducción a Power BI
  2. Instalación de Power BI
  3. Modelado de datos
  4. Visualización de datos
  5. Dashboards
  6. Uso compartido de datos
  1. CartoDB
  2. ¿Qué es CARTO?
  3. Carga y uso de datos. Tipos de análisis
  4. Programación de un visor con la librería CARTO.js
  5. Uso de ejemplos y ayudas de la documentación de la API
  1. Cambiar títulos de eje
  2. Aumentar el espacio entre ejes y títulos de ejes
  3. Cambiar la estética de los títulos de Axis
  4. Cambiar la estética del texto del eje
  5. Texto del eje de rotación
  6. Eliminar texto de eje y marcas
  7. Eliminar títulos de eje
  8. Límite del rango del eje
  9. Forzar el trazado para que comience en el origen
  10. Ejes con la misma escala
  11. Usar una función para modificar etiquetas
  1. Añade un título
  2. Ajustar la posición de los títulos
  3. Use una fuente no tradicional en su título
  4. Cambiar espaciado en texto de varias líneas
  1. Trabajando con leyendas
  2. Apaga la leyenda
  3. Eliminar títulos de leyenda
  4. Cambiar la posición de la leyenda
  5. Cambiar la dirección de la leyenda
  6. Cambiar el estilo del título de la leyenda
  7. Cambiar título de leyenda
  8. Cambiar el orden de las claves de leyenda
  9. Cambiar etiquetas de leyenda
  10. Cambiar cuadros de fondo en la leyenda
  11. Cambiar el tamaño de los símbolos de leyenda
  12. Dejar una capa fuera de la leyenda
  13. Adición manual de elementos de leyenda
  14. Usar otros estilos de leyenda
  1. Cambiar el color de fondo del panel
  2. Cambiar líneas de cuadrícula
  3. Cambiar el espaciado de las líneas de cuadrícula
  4. Cambiar el color de fondo de la trama
  1. Trabajar con márgenes
  1. Trabajar con gráficos de paneles múltiples
  2. Crear múltiplos pequeños basados en una variable
  3. Permitir que los ejes deambulen libremente
  4. Uso facet_wrapcon dos variables
  5. Modificar el estilo de los textos de la tira
  6. Crear un panel de diferentes parcelas
  1. Trabajar con colores
  2. Especificar colores individuales
  3. Asignar colores a las variables
  4. Variables Cualitativas
  5. Seleccionar manualmente colores cualitativos
  6. Utilice paletas de colores cualitativas integradas
  7. Use paletas de colores cualitativos de paquetes de extensión
  8. Variables Cuantitativas
  9. La paleta de colores Viridis
  10. Usar paletas de colores cuantitativas de paquetes de extensión
  11. Modificar paletas de colores después
  1. Cambiar el estilo de trazado general
  2. Cambiar la fuente de todos los elementos de texto
  3. Cambiar el tamaño de todos los elementos de texto
  4. Cambiar el tamaño de todos los elementos de línea y rectángulo
  5. Crea tu propio tema
  6. Actualizar el tema actual
  1. Agregar líneas horizontales o verticales a un gráfico
  2. Agregar una línea dentro de un gráfico
  3. Agregar líneas curvas y flechas a un gráfico
  1. Agregue etiquetas
  2. Agregar anotaciones de texto
  3. Use Markdown y HTML Rendering para anotaciones
  1. Voltear una parcela
  2. arreglar un eje
  3. Invertir un eje
  4. Transformar un eje
  5. Circularizar una parcela
  1. Alternativas a un diagrama de caja
  2. Crear una representación de alfombra en un gráfico
  3. Crear una matriz de correlación
  4. Crear un gráfico de contorno
  5. Crear un mapa de calor
  6. Crear un diagrama de cresta
  1. Trabajar con cintas (AUC, CI, etc.)
  1. Predeterminado: agregar un suavizado LOESS o GAM
  1. Trabajar con gráficos interactivos
  1. ¿Qué es la analítica web?
  2. Establecimiento de objetivos y KPIs
  3. Métricas principales y avanzadas
  4. Objetivos y ventajas de medir
  5. Plan de medición
  1. Introducción a Google Analytics 4
  2. Interfaz
  3. Métricas y dimensiones
  4. Informes básicos
  5. Filtros
  6. Segmentos
  7. Eventos
  8. Informes personalizados
  9. Comportamiento de los usuarios e interpretación de datos
  1. Introducción a GTM
  2. Implementación con GTM
  3. Medición con GTM
  4. Uso de Debug/Preview Mode
  1. La atribución
  2. Multicanalidad
  3. Customer Journey
  4. Principales modelos de atribución
  5. Modelos de atribución personalizados
  1. Planificación del Dashboard
  2. Características del Dashboard
  3. Introducción a Data Studio
  4. Conectores
  5. Tipos de gráficos
  6. Personalización de informes
  7. Elementos de control
  8. Dimensiones y métricas
  9. Campos Calculados
  10. Compartir informes
  1. Introducción al SEO
  2. Historia de los motores de búsqueda
  3. Componentes de un motor de búsqueda
  4. Organización de resultados en un motor de búsqueda
  5. La importancia del contenido
  6. El concepto de autoridad en Internet
  7. Campaña SEO
  1. Introducción al SEM
  2. Principales conceptos en SEM
  3. Sistema de pujas y Calidad del anuncio
  4. Primer contacto con Google Ads
  5. Creación de anuncios con calidad
  6. Indicadores clave de rendimiento en SEM
  1. Análisis del tráfico en redes sociales
  2. Fijar objetivos en redes sociales
  3. Facebook
  4. Twitter
  5. Youtube
  6. LinkedIn
  7. Tik tok
  8. Instagram
  1. Usabilidad
  2. Mapas de calor
  3. Grabaciones de sesiones de usuario
  4. Ordenación de tarjetas
  5. Test A/B
  6. Test multivariante
  7. KPI, indicadores clave de rendimiento
  8. Cambios a realizar para optimizar una página web
  1. Hotjar
  2. Microsoft Power BI
  3. Google Search Console
  4. Matomo
  5. Awstats
  6. Chartbeat
  7. Adobe Analytics
  1. ¿Qué son las cookies?
  2. Tipos de cookies
  3. GDPR
  4. Herramientas para manejar el consentimiento de cookies
  1. Introducción a la inteligencia artificial
  2. Historia
  3. La importancia de la IA
  1. Algoritmos aplicados a la inteligencia artificial
  1. Relación entre inteligencia artificial y big data
  2. IA y Big Data combinados
  3. El papel del Big Data en IA
  4. Tecnologías de IA que se están utilizando con Big Data
  1. Sistemas expertos
  2. Estructura de un sistema experto
  3. Inferencia: Tipos
  4. Fases de construcción de un sistema
  5. Rendimiento y mejoras
  6. Dominios de aplicación
  7. Creación de un sistema experto en C#
  8. Añadir incertidumbre y probabilidades
  1. Futuro de la inteligencia artificial
  2. Impacto de la IA en la industria
  3. El impacto económico y social global de la IA y su futuro
  1. Introducción
  2. Clasificación de algoritmos de aprendizaje automático
  3. Ejemplos de aprendizaje automático
  4. Diferencias entre el aprendizaje automático y el aprendizaje profundo
  5. Tipos de algoritmos de aprendizaje automático
  6. El futuro del aprendizaje automático
  1. Introducción
  2. Filtrado colaborativo
  3. Clusterización
  4. Sistemas de recomendación híbridos
  1. Clasificadores
  2. Algoritmos
  1. Introducción
  2. El proceso de paso de DSS a IDSS
  3. Casos de aplicación
  1. Aprendizaje profundo
  2. Entorno de Deep Learning con Python
  3. Aprendizaje automático y profundo
  1. Redes neuronales
  2. Redes profundas y redes poco profundas
  1. Perceptrón de una capa y multicapa
  2. Ejemplo de perceptrón
  1. Tipos de redes profundas
  2. Trabajar con TensorFlow y Python
  1. Entrada y salida de datos
  2. Entrenar una red neuronal
  3. Gráficos computacionales
  4. Implementación de una red profunda
  5. El algoritmo de propagación directa
  6. Redes neuronales profundas multicapa
  1. ¿Qué es PLN?
  2. ¿Qué incluye el PLN?
  3. Ejemplos de uso de PLN
  4. Futuro del PLN
  1. PLN en Python con la librería NLTK
  2. Otras herramientas para PLN
  1. Principios del análisis sintáctico
  2. Gramática libre de contexto
  3. Analizadores sintácticos (Parsers)
  1. Aspectos introductorios del análisis semántico
  2. Lenguaje semántico para PLN
  3. Análisis pragmático
  1. Aspectos introductorios
  2. Pasos en la extracción de información
  3. Ejemplo PLN
  4. Ejemplo PLN con entrada de texto en inglés
  1. Aspectos introductorios
  2. ¿Qué es un chatbot?
  3. ¿Cómo funciona un chatbot?
  4. VoiceBots
  5. Desafios para los Chatbots
  1. Chatbots y el papel de la Inteligencia Artificial (IA)
  2. Usos y beneficios de los chatbots
  3. Diferencia entre bots, chatbots e IA
  1. Áreas de aplicación de Chatbots
  2. Desarrollo de un chatbot con ChatterBot y Python
  3. Desarrollo de un chatbot para Facebook Messenger con Chatfuel
  1. La visión artificial: definiciones y aspectos principales
  1. Ópticas
  2. Iluminación
  3. Cámaras
  4. Sistemas 3D
  5. Sensores
  6. Equipos compactos
  7. Metodologías para la selección del hardware
  1. Algoritmos
  2. Software
  3. Segmentación e interpretación de imágenes
  4. Metodologías para la selección del software
  1. Aplicaciones clásicas: discriminación, detección de fallos…
  2. Nuevas aplicaciones: códigos OCR, trazabilidad, robótica, reconocimiento (OKAO)
  1. Descripción general OpenCV
  2. Instalación OpenCV para Python en Windows
  3. Instalación OpenCV para Python en Linux
  4. Anaconda y OpenCV
  1. Manejo de archivos
  2. Leer una imagen con OpenCV
  3. Mostrar imagen con OpenCV
  4. Guardar una imagen con OpenCV
  5. Operaciones aritméticas en imágenes usando OpenCV
  6. Funciones de dibujo
  1. Redimensión de imágenes
  2. Erosión de imágenes
  3. Desenfoque de imágenes
  4. Bordeado de imágenes
  5. Escala de grises en imágenes
  6. Escalado, rotación, desplazamiento y detección de bordes
  7. Erosión y dilatación de imágenes
  8. Umbrales simples
  9. Umbrales adaptativos
  10. Umbral de Otsu
  11. Contornos de imágenes
  12. Incrustación de imágenes
  13. Intensidad en imágenes
  14. Registro de imágenes
  15. Extracción de primer plano
  16. Operaciones morfológicas en imágenes
  17. Pirámide de imágen
  1. Analizar imágenes usando histogramas
  2. Ecualización de histogramas
  3. Template matching
  4. Detección de campos en documentos usando Template matching
  1. Espacios de color en OpenCV
  2. Cambio de espacio de color
  3. Filtrado de color
  4. Denoising de imágenes en color
  5. Visualizar una imagen en diferentes espacios de color
  1. Detección de líneas
  2. Detección de círculos
  3. Detectar esquinas (Método Shi-Tomasi)
  4. Detectar esquinas (método Harris)
  5. Encontrar círculos y elipses
  6. Detección de caras y sonrisas
  1. Vecino más cercano (K-Nearest Neighbour)
  2. Agrupamiento de K-medias (K-Means Clustering)

metodología

claustro

Claustro Docente

Ofrecerá un minucioso seguimiento al alumno, resolviendo sus dudas.

campus virtual

Formación Online

Toda nuestra oferta formativa es de modalidad online, incluidos los exámenes.

materiales didácticos

Comunidad

En la que todos los alumos de INESEM podrán debatir y compartir su conocimiento.

material adicional

Materiales Didácticos

En la mayoría de nuestras acciones formativas, el alumno contará con el apoyo de los materiales físicos.

Centro de atención al estudiante (CAE)

Material Adicional

El alumno podrá completar el proceso formativo y ampliar los conocimientos de cada área concreta.

inesem emplea

Campus Virtual

Entorno Persona de Aprendizaje disponible las 24 horas, los 7 días de la semana.

Una vez finalizado el proceso de matriculación, el alumno empieza su andadura en INESEM Formación Continua a través de nuestro Campus Virtual.

La metodología INESEM Business School, ha sido diseñada para acercar el aula al alumno dentro de la formación online. De esta forma es tan importante trabajar de forma activa en la plataforma, como necesario el trabajo autónomo de este. El alumno cuenta con una completa acción formativa que incluye además del contenido teórico, objetivos, mapas conceptuales, recuerdas, autoevaluaciones, bibliografía, exámenes, actividades prácticas y recursos en forma de documentos descargables, vídeos, material complementario, normativas, páginas web, etc.

A esta actividad en la plataforma hay que añadir el tiempo asociado a la formación dedicado a horas de estudio. Estos son unos completos libros de acceso ininterrumpido a lo largo de la trayectoria profesional de la persona, no solamente durante la formación. Según nuestra experiencia, gran parte del alumnado prefiere trabajar con ellos de manera alterna con la plataforma, si bien la realización de autoevaluaciones de cada unidad didáctica y evaluación de módulo, solamente se encuentra disponible de forma telemática.

El alumno deberá avanzar a lo largo de las unidades didácticas que constituyen el itinerario formativo, así como realizar las actividades y autoevaluaciones correspondientes. Al final del itinerario encontrará un examen final o exámenes. A fecha fin de la acción formativa el alumno deberá haber visitado al menos el 100 % de los contenidos, haber realizado al menos el 75 % de las actividades de autoevaluación, haber realizado al menos el 75 % de los exámenes propuestos y los tiempos de conexión alcanzados deberán sumar en torno al 75 % de las horas de la teleformación de su acción formativa. Dicho progreso se contabilizará a través de la plataforma virtual y puede ser consultado en cualquier momento.

La titulación será remitida al alumno por correo postal una vez se haya comprobado que ha completado el proceso de aprendizaje satisfactoriamente.

Requisitos de acceso

Esta formación pertenece al programa de Formación Continua de INESEM. Esta formación se tramita con cargo a un crédito que tienen asignado las empresas privadas españolas para la formación de sus empleados sin que les suponga un coste.

Para tramitar dicha formación es preciso cumplir los siguientes requisitos:

  • Estar trabajando para una empresa privada
  • Encontrarse cotizando en Régimen General de la Seguridad Social
  • Solicitar un curso que esté relacionado con el puesto de trabajo o con la actividad empresarial
  • Que la empresa autorice la formación
  • Que la empresa disponga de suficiente crédito formativo para cubrir el coste del curso

titulación

Titulación de Formación Continua Bonificada expedida por el Instituto Europeo de Estudios Empresariales (INESEM). Título Propio del Instituto Europeo de Estudios Empresariales (INESEM) “Enseñanza no oficial y no conducente a la obtención de un título con carácter oficial o certificado de profesionalidad.”

Opiniones de los alumnos

TAMBIÉN PODRÍA INTERESARTE...
Cursos bonificados relacionados
Técnico en Gestores de Datos y de la Información
Hasta 100% bonificable
Curso de Administración de CRM
Hasta 100% bonificable
Administración de Bases de Datos (Online)
Hasta 100% bonificable
¿Qué es Formación Continua?
POR QUÉ ESTUDIAR EN INESEM
Claustro especializado
Profesores especializados realizarán un seguimiento personalizado al alumno.
campus virtual
Acceso a la plataforma de aprendizaje disponible las 24 horas e ilimitado.
Gestión gratuita
Gestionamos todos los trámites administrativos para la bonificación de la formación.
materiales didácticos
Enviamos gratis los materiales de apoyo en la mayoría de nuestras acciones formativas (envíos a España).
planes formativos a medida
Diseñamos planes de formación adaptados a las necesidades de las empresas.
materiales adicionales
Los alumnos podrán profundizar más con material adicional que su docente le puede aportar.
amplio catálogo formativo
Contamos con más de 5000 cursos y masters bonificables para trabajadores.
Centro de atención al estudiante
Nuestros asesores académicos atenderán al alumnado antes, durante y después de la formación.
consultoría de recursos humanos
Ofrecemos soluciones para el área laboral de tu empresa.
secretaría virtual
Todas las gestiones las podrás hacer vía online, no será necesario hacerlo presencial.
INESEM en cifras
+150.000

alumnos

99%

de empleabilidad

+2.000

acuerdos con empresas

98%

de satisfacción

Universidades colaboradoras