Las acciones formativas de Formacioncontinua tienen modalidad online
Modalidad
ONLINE
Duración de las acciones formativas de formacioncontinua
Duración Total
1500 H
Duración de teleformación de las acciones formativas de formacioncontinua
Horas Teleformación
450 H
Precio de las acciones formativas de INESEM
Entidad
INESEM Business School
Presentación

Descripción
Actualmente, en muchos sectores, la creciente cantidad de datos y el auge del Internet de las cosas (IoT) presentan la necesidad de analizar y procesar toda esta información para la mejora y adecuación de las estrategias de negocio de las empresas. Además, todas las empresas buscan la reducción de sus costes y mediante la aplicación de las técnicas adecuadas de Big Data este objetivo puede cumplirse. Con este Máster en Big Data y Data Science tendrás la posibilidad de trabajar en proyectos donde se busca la mejor solución sin dejar de lado la escalabilidad de los datos. Además, contarás con un equipo de profesionales especializados en la materia. Además, gracias a las prácticas garantizadas, podrás acceder a un mercado laboral en plena expansión.

Objetivos
  • Aprender los principios del Big Data y el desarrollo de las fases de un proyecto de Big Data.
  • Conocer las herramientas existentes y su uso para analizar y explotar datos masivos.
  • Explotar datos y visualizar resultados a través de técnicas de Data Science.
  • Comprender y utilizar la programación estadística con R y Python.
  • Conocer en qué consiste el Data Mining y aplicarlo correctamente.
  • Saber utilizar las analíticas web para Big Data y aplicarlas mediante Google Analytics.
  • Crear visualizaciones de datos profesionales y poder compartir informes mediante Power BI.

Para qué te prepara
En este Master en Big Data y Data Science gestionarás datos masivos, viendo las diferentes fases a seguir para explotar todo su potencial y extraer conclusiones relevantes para las empresas. Utilizarás las herramientas más actuales en proyectos de Big Data, analizarás datos con Python y R, aplicarás algoritmos de machine learning, crearás chatbots, crearás informes con Power BI y aplicarás la analítica web con Google Analytics.

A quién va dirigido
El Master en Big Data y Data Science puede aplicarse a muchos sectores y perfiles, por lo que es dirigido para aquellas personas que quieran conocer en qué consiste el Big Data, cómo pueden aplicarlo en distintos ámbitos con el objetivo de mejorar su carrera profesional y con qué herramientas se puede llevar a cabo dichos análisis de grandes volúmenes de datos.

temario

  1. ¿Qué es Big Data?
  2. La era de las grandes cantidades de información: historia del big data
  3. La importancia de almacenar y extraer información
  4. Big Data enfocado a los negocios
  5. Open data
  6. Información pública
  7. IoT (Internet of Things-Internet de las cosas)
  1. Definición y relevancia de la selección de las fuentes de datos
  2. Naturaleza de las fuentes de datos Big Data
  1. Definición, Beneficios y Características
  2. Ejemplo de uso de Open Data
  1. Diagnóstico inicial
  2. Diseño del proyecto
  3. Proceso de implementación
  4. Monitorización y control del proyecto
  5. Responsable y recursos disponibles
  6. Calendarización
  7. Alcance y valoración económica del proyecto
  1. Definiendo el concepto de Business Intelligence y Sociedad de la Información
  2. Arquitectura de una solución Business Intelligence
  3. Business Intelligence en los departamentos de la empresa
  4. Conceptos de Plan Director, Plan Estratégico y Plan de Operativa Anual
  5. Sistemas Operacionales y Procesos ETL en un sistema de BI
  6. Ventajas y Factores de Riesgos del Business Intelligence
  1. Cuadros de Mando Integrales (CMI)
  2. Sistemas de Soporte a la Decisión (DSS)
  3. Sistemas de Información Ejecutiva (EIS)
  1. Apoyo del Big Data en el proceso de toma de decisiones
  2. Toma de decisiones operativas
  3. Marketing estratégico y Big Data
  4. Nuevas tendencias en management
  5. Ejercicios Prácticos
  1. Concepto de Web Semántica
  2. Linked Data Vs. Big Data
  3. Lenguaje de consulta SPARQL
  1. Contexto Internet de las Cosas (IoT)
  2. ¿Qué es IoT?
  3. Elementos que componen el ecosistema IoT
  4. Arquitectura IoT
  5. Dispositivos y elementos empleados
  6. Ejemplos de uso
  7. Retos y líneas de trabajo futuras
  1. ¿Qué es el Data Storytelling?
  2. Elementos clave del Data Storytelling
  3. ¿Por qué es importante el Data Storytelling?
  4. ¿Cómo hacer Data Storytelling?
  1. ¿Qué es la ciencia de datos?
  2. Herramientas necesarias para el científico de datos
  3. Data Science & Cloud Computing
  4. Aspectos legales en Protección de Datos
  1. Introducción
  2. El modelo relacional
  3. Lenguaje de consulta SQL
  4. MySQL Una base de datos relacional
  1. ¿Qué es una base de datos NoSQL?
  2. Bases de datos Relaciones Vs Bases de datos NoSQL
  3. Tipo de Bases de datos NoSQL Teorema de CAP
  4. Sistemas de Bases de datos NoSQL
  1. ¿Qué es MongoDB?
  2. Funcionamiento y uso de MongoDB
  3. Primeros pasos con MongoDB: Instalación y shell de comandos
  4. Creando nuestra primera Base de Datos NoSQL: Modelo e Inserción de Datos
  5. Actualización de datos en MongoDB: Sentencias set y update
  6. Trabajando con índices en MongoDB para optimización de datos
  7. Consulta de datos en MongoDB
  1. ¿Qué es Weka?
  2. Técnicas de Data Mining en Weka
  3. Interfaces de Weka
  4. Selección de atributos
  1. Una aproximación a PENTAHO
  2. Soluciones que ofrece PENTAHO
  3. MongoDB & PENTAHO
  4. Hadoop & PENTAHO
  5. Weka & PENTAHO
  1. Introducción a R
  2. ¿Qué necesitas?
  3. Tipos de datos
  4. Estadística Descriptiva y Predictiva con R
  5. Integración de R en Hadoop
  1. Obtención y limpieza de los datos (ETL)
  2. Inferencia estadística
  3. Modelos de regresión
  4. Pruebas de hipótesis
  1. Inteligencia Analítica de negocios
  2. La teoría de grafos y el análisis de redes sociales
  3. Presentación de resultados
  1. Introducción a la minería de datos y el aprendizaje automático
  2. Proceso KDD
  3. Modelos y Técnicas de Data Mining
  4. Áreas de aplicación
  5. Minería de textos y Web Mining
  6. Data mining y marketing
  1. Tipos de problemas
  2. Implicaciones de los datos, dominios, técnicas en las fases del proceso
  3. Casos de uso
  1. Clasificación o Arboles de decisión o Naive Bayes
  2. Clustering o K-means o EM
  3. Asociacion o A priori
  1. ¿Qué es Hadoop? Relación con Big Data
  2. Instalación y configuración de insfraestructura y ecosistema Hadoop
  3. Sistema de archivos HDFS
  4. MapReduce con Hadoop
  5. Apache Hive
  6. Apache Hue
  7. Apache Spark
  1. Introducción a la inteligencia artificial
  2. Historia
  3. La importancia de la IA
  1. Algoritmos aplicados a la inteligencia artificial
  1. Relación entre inteligencia artificial y big data
  2. IA y Big Data combinados
  3. El papel del Big Data en IA
  4. Tecnologías de IA que se están utilizando con Big Data
  1. Sistemas expertos
  2. Estructura de un sistema experto
  3. Inferencia: Tipos
  4. Fases de construcción de un sistema
  5. Rendimiento y mejoras
  6. Dominios de aplicación
  7. Creación de un sistema experto en C#
  8. Añadir incertidumbre y probabilidades
  1. Introducción
  2. Clasificación de algoritmos de aprendizaje automático
  3. Ejemplos de aprendizaje automático
  4. Diferencias entre el aprendizaje automático y el aprendizaje profundo
  5. Tipos de algoritmos de aprendizaje automático
  6. El futuro del aprendizaje automático
  1. Introducción
  2. Filtrado colaborativo
  3. Clusterización
  4. Sistemas de recomendación híbridos
  1. Clasificadores
  2. Algoritmos
  1. Introducción
  2. El proceso de paso de DSS a IDSS
  3. Casos de aplicación
  1. Aprendizaje profundo
  2. Entorno de Deep Learning con Python
  3. Aprendizaje automático y profundo
  1. Redes neuronales
  2. Redes profundas y redes poco profundas
  1. Perceptrón de una capa y multicapa
  2. Ejemplo de perceptrón
  1. Tipos de redes profundas
  2. Trabajar con TensorFlow y Python
  1. Entrada y salida de datos
  2. Entrenar una red neuronal
  3. Gráficos computacionales
  4. Implementación de una red profunda
  5. El algoritmo de propagación directa
  6. Redes neuronales profundas multicapa
  1. ¿Qué es PLN?
  2. ¿Qué incluye el PLN?
  3. Ejemplos de uso de PLN
  4. Futuro del PLN
  1. PLN en Python con la librería NLTK
  2. Otras herramientas para PLN
  1. Principios del análisis sintáctico
  2. Gramática libre de contexto
  3. Analizadores sintácticos (Parsers)
  1. Aspectos introductorios del análisis semántico
  2. Lenguaje semántico para PLN
  3. Análisis pragmático
  1. Aspectos introductorios
  2. Pasos en la extracción de información
  3. Ejemplo PLN
  4. Ejemplo PLN con entrada de texto en inglés
  1. Aspectos introductorios
  2. ¿Qué es un chatbot?
  3. ¿Cómo funciona un chatbot?
  4. VoiceBots
  5. Desafios para los Chatbots
  1. Chatbots y el papel de la Inteligencia Artificial (IA)
  2. Usos y beneficios de los chatbots
  3. Diferencia entre bots, chatbots e IA
  1. Áreas de aplicación de Chatbots
  2. Desarrollo de un chatbot con ChatterBot y Python
  3. Desarrollo de un chatbot para Facebook Messenger con Chatfuel
  1. ¿Qué es Power BI?
  2. Funciones de Power BI
  3. Versiones de Power BI
  4. Roles de Power BI
  5. Planificación de proyectos con Power BI
  1. Instalación y puesta en marcha
  2. Conexión de datos a Power BI
  3. Filtrado de datos
  4. Vista de datos
  1. Introducción al modelado de datos
  2. Creación de medidas
  3. Creación y relación entre tablas
  4. Creación de columnas y medidas calculadas
  5. Dinamizar columnas
  6. Fórmulas de consulta
  1. Creación de gráficas
  2. Tablas dinámicas
  3. Segmentación de datos
  4. Uso de objetos visuales
  5. Formas y cuadros de texto
  6. Imágenes
  7. Matrices y tablas
  8. Cómo crear un velocímetro
  9. Mapas
  10. Slicers
  11. Cómo modificar colores
  1. Uso del Dashboard
  2. Compartir Dashboards
  3. Añadir Widgets
  4. Cómo crear reportes
  5. Ajustes del panel
  6. Preguntas y respuestas del Dashboard
  1. Exportar datos de Power BI a Excel
  2. Exportar Dashboards
  3. Crear paquetes de contenido
  4. Presentación de informes
  5. Cómo públicar y compartir informes
  6. Introducción a Power BI mobile
  1. ¿Qué es la analítica web?
  2. Establecimiento de objetivos y KPIs
  3. Métricas principales y avanzadas
  4. Objetivos y ventajas de medir
  5. Plan de medición
  1. Introducción a Google Analytics 4
  2. Interfaz
  3. Métricas y dimensiones
  4. Informes básicos
  5. Filtros
  6. Segmentos
  7. Eventos
  8. Informes personalizados
  9. Comportamiento de los usuarios e interpretación de datos
  1. Introducción a GTM
  2. Implementación con GTM
  3. Medición con GTM
  4. Uso de Debug/Preview Mode
  1. La atribución
  2. Multicanalidad
  3. Customer Journey
  4. Principales modelos de atribución
  5. Modelos de atribución personalizados
  1. Planificación del Dashboard
  2. Características del Dashboard
  3. Introducción a Data Studio
  4. Conectores
  5. Tipos de gráficos
  6. Personalización de informes
  7. Elementos de control
  8. Dimensiones y métricas
  9. Campos Calculados
  10. Compartir informes
  1. Introducción al SEO
  2. Historia de los motores de búsqueda
  3. Componentes de un motor de búsqueda
  4. Organización de resultados en un motor de búsqueda
  5. La importancia del contenido
  6. El concepto de autoridad en Internet
  7. Campaña SEO
  1. Introducción al SEM
  2. Principales conceptos en SEM
  3. Sistema de pujas y Calidad del anuncio
  4. Primer contacto con Google Ads
  5. Creación de anuncios con calidad
  6. Indicadores clave de rendimiento en SEM
  1. Análisis del tráfico en redes sociales
  2. Fijar objetivos en redes sociales
  3. Facebook
  4. Twitter
  5. Youtube
  6. LinkedIn
  7. Tik tok
  8. Instagram
  1. Usabilidad
  2. Mapas de calor
  3. Grabaciones de sesiones de usuario
  4. Ordenación de tarjetas
  5. Test A/B
  6. Test multivariante
  7. KPI, indicadores clave de rendimiento
  8. Cambios a realizar para optimizar una página web
  1. Hotjar
  2. Microsoft Power BI
  3. Google Search Console
  4. Matomo
  5. Awstats
  6. Chartbeat
  7. Adobe Analytics
  1. ¿Qué son las cookies?
  2. Tipos de cookies
  3. GDPR
  4. Herramientas para manejar el consentimiento de cookies

metodología

claustro

Claustro Docente

Ofrecerá un minucioso seguimiento al alumno, resolviendo sus dudas.

campus virtual

Formación Online

Toda nuestra oferta formativa es de modalidad online, incluidos los exámenes.

materiales didácticos

Comunidad

En la que todos los alumos de INESEM podrán debatir y compartir su conocimiento.

material adicional

Materiales Didácticos

En la mayoría de nuestras acciones formativas, el alumno contará con el apoyo de los materiales físicos.

Centro de atención al estudiante (CAE)

Material Adicional

El alumno podrá completar el proceso formativo y ampliar los conocimientos de cada área concreta.

inesem emplea

Campus Virtual

Entorno Persona de Aprendizaje disponible las 24 horas, los 7 días de la semana.

Una vez finalizado el proceso de matriculación, el alumno empieza su andadura en INESEM Formación Continua a través de nuestro Campus Virtual.

La metodología INESEM Business School, ha sido diseñada para acercar el aula al alumno dentro de la formación online. De esta forma es tan importante trabajar de forma activa en la plataforma, como necesario el trabajo autónomo de este. El alumno cuenta con una completa acción formativa que incluye además del contenido teórico, objetivos, mapas conceptuales, recuerdas, autoevaluaciones, bibliografía, exámenes, actividades prácticas y recursos en forma de documentos descargables, vídeos, material complementario, normativas, páginas web, etc.

A esta actividad en la plataforma hay que añadir el tiempo asociado a la formación dedicado a horas de estudio. Estos son unos completos libros de acceso ininterrumpido a lo largo de la trayectoria profesional de la persona, no solamente durante la formación. Según nuestra experiencia, gran parte del alumnado prefiere trabajar con ellos de manera alterna con la plataforma, si bien la realización de autoevaluaciones de cada unidad didáctica y evaluación de módulo, solamente se encuentra disponible de forma telemática.

El alumno deberá avanzar a lo largo de las unidades didácticas que constituyen el itinerario formativo, así como realizar las actividades y autoevaluaciones correspondientes. Al final del itinerario encontrará un examen final o exámenes. A fecha fin de la acción formativa el alumno deberá haber visitado al menos el 100 % de los contenidos, haber realizado al menos el 75 % de las actividades de autoevaluación, haber realizado al menos el 75 % de los exámenes propuestos y los tiempos de conexión alcanzados deberán sumar en torno al 75 % de las horas de la teleformación de su acción formativa. Dicho progreso se contabilizará a través de la plataforma virtual y puede ser consultado en cualquier momento.

La titulación será remitida al alumno por correo postal una vez se haya comprobado que ha completado el proceso de aprendizaje satisfactoriamente.

Requisitos de acceso

Esta formación pertenece al programa de Formación Continua de INESEM. Esta formación se tramita con cargo a un crédito que tienen asignado las empresas privadas españolas para la formación de sus empleados sin que les suponga un coste.

Para tramitar dicha formación es preciso cumplir los siguientes requisitos:

  • Estar trabajando para una empresa privada
  • Encontrarse cotizando en Régimen General de la Seguridad Social
  • Solicitar un curso que esté relacionado con el puesto de trabajo o con la actividad empresarial
  • Que la empresa autorice la formación
  • Que la empresa disponga de suficiente crédito formativo para cubrir el coste del curso

titulación

Titulación de Formación Continua Bonificada expedida por el Instituto Europeo de Estudios Empresariales (INESEM). Titulación Expedida y Avalada por el Instituto Europeo de Estudios Empresariales “Enseñanza no oficial y no conducente a la obtención de un título con carácter oficial o certificado de profesionalidad.”

Opiniones de los alumnos

TAMBIÉN PODRÍA INTERESARTE...
Cursos bonificados relacionados
Curso de Administración de CRM
Hasta 100% bonificable
Administración de Bases de Datos (Online)
Hasta 100% bonificable
Técnico en Gestores de Datos y de la Información
Hasta 100% bonificable
¿Qué es Formación Continua?
POR QUÉ ESTUDIAR EN INESEM
Claustro especializado
Profesores especializados realizarán un seguimiento personalizado al alumno.
campus virtual
Acceso a la plataforma de aprendizaje disponible las 24 horas e ilimitado.
Gestión gratuita
Gestionamos todos los trámites administrativos para la bonificación de la formación.
materiales didácticos
Enviamos gratis los materiales de apoyo en la mayoría de nuestras acciones formativas (envíos a España).
planes formativos a medida
Diseñamos planes de formación adaptados a las necesidades de las empresas.
materiales adicionales
Los alumnos podrán profundizar más con material adicional que su docente le puede aportar.
amplio catálogo formativo
Contamos con más de 5000 cursos y masters bonificables para trabajadores.
Centro de atención al estudiante
Nuestros asesores académicos atenderán al alumnado antes, durante y después de la formación.
consultoría de recursos humanos
Ofrecemos soluciones para el área laboral de tu empresa.
secretaría virtual
Todas las gestiones las podrás hacer vía online, no será necesario hacerlo presencial.
INESEM en cifras
+150.000

alumnos

99%

de empleabilidad

+2.000

acuerdos con empresas

98%

de satisfacción

Universidades colaboradoras