Las acciones formativas de Formacioncontinua tienen modalidad online
Modalidad
ONLINE
Duración de las acciones formativas de formacioncontinua
Duración Total
1500 H
Duración de teleformación de las acciones formativas de formacioncontinua
Horas Teleformación
450 H
Precio de las acciones formativas de INESEM
Entidad
INESEM Formación Continua
Presentación

Descripción
La inteligencia artificial (IA) se ha convertido en un pilar fundamental en el mundo de la programación. Desde el análisis de datos hasta el desarrollo de sistemas autónomos, la IA impulsa avances revolucionarios. Este Máster en Inteligencia Artificial para Programadores ofrece una formación completa en diversas ramas de la IA, dotando de las herramientas y habilidades necesarias para enfrentar los desafíos actuales y futuros en el ámbito tecnológico. Desde la implementación de algoritmos de aprendizaje automático hasta la creación de sofisticados chatbots y sistemas de visión artificial, gracias a esta formación podrás adquirir conocimientos prácticos y teóricos para innovar en un amplio espectro de aplicaciones.

Objetivos
  • Dominar conceptos fundamentales de IA y sus aplicaciones en programación.
  • Implementar algoritmos de aprendizaje automático para análisis de datos.
  • Desarrollar chatbots avanzados con técnicas de procesamiento de lenguaje natural.
  • Aplicar técnicas de visión artificial para reconocimiento de objetos e imágenes.
  • Manejar herramientas de Big Data y análisis estadístico para IA.
  • Integrar modelos de lenguaje como Gemini y Copilot en proyectos de programación.
  • Programar aplicaciones de visión artificial con OpenCV y Python.

Para qué te prepara
Este Máster en Inteligencia Artificial para Programadores te prepara para destacar en un mercado laboral cada vez más impulsado por IA. Podrás desarrollar sistemas inteligentes, crear aplicaciones de vanguardia y resolver problemas complejos utilizando herramientas y técnicas de IA. Además, podrás enfrentar desafíos emergentes en áreas como procesamiento de lenguaje natural, visión artificial, análisis de datos y desarrollo de sistemas autónomos.

A quién va dirigido
Este Máster en Inteligencia Artificial para Programadores está dirigido a profesionales de la programación, desarrollo de software y profesionales de la tecnología que deseen adquirir competencias avanzadas en inteligencia artificial. También es adecuado para aquellas personas interesadas en explorar nuevas oportunidades laborales en áreas relacionadas con la IA.

temario

  1. Minería de datos
  2. ¿Qué podemos hacer con data Mining?
  3. ¿Qué usos puede tener el data Mining?
  4. Metodología de la minería de datos
  5. Algunas técnicas estadísticas utilizadas en data mining
  6. Árboles de decisión
  7. Reglas de inducción
  8. Redes Bayesanas
  9. Algoritmos Genéticos
  1. Ciclo data mining
  2. Minería de Textos y Web Mining
  3. Data mining y marketing
  1. Introducción a la inteligencia artificial
  2. Historia
  3. La importancia de la IA
  1. Algoritmos aplicados a la inteligencia artificial
  1. Relación entre inteligencia artificial y big data
  2. IA y Big Data combinados
  3. El papel del Big Data en IA
  4. Tecnologías de IA que se están utilizando con Big Data
  1. Sistemas expertos
  2. Estructura de un sistema experto
  3. Inferencia: Tipos
  4. Fases de construcción de un sistema
  5. Rendimiento y mejoras
  6. Dominios de aplicación
  7. Creación de un sistema experto en C#
  8. Añadir incertidumbre y probabilidades
  1. Introducción
  2. Clasificación de algoritmos de aprendizaje automático
  3. Ejemplos de aprendizaje automático
  4. Diferencias entre el aprendizaje automático y el aprendizaje profundo
  5. Tipos de algoritmos de aprendizaje automático
  6. El futuro del aprendizaje automático
  1. Introducción
  2. Filtrado colaborativo
  3. Clusterización
  4. Sistemas de recomendación híbridos
  1. Clasificadores
  2. Algoritmos
  1. Introducción
  2. El proceso de paso de DSS a IDSS
  3. Casos de aplicación
  1. ¿Qué es PLN?
  2. ¿Qué incluye el PLN?
  3. Ejemplos de uso de PLN
  4. Futuro del PLN
  1. PLN en Python con la librería NLTK
  2. Otras herramientas para PLN
  1. Principios del análisis sintáctico
  2. Gramática libre de contexto
  3. Analizadores sintácticos (Parsers)
  1. Aspectos introductorios del análisis semántico
  2. Lenguaje semántico para PLN
  3. Análisis pragmático
  1. Aspectos introductorios
  2. Pasos en la extracción de información
  3. Ejemplo PLN
  4. Ejemplo PLN con entrada de texto en inglés
  1. Aspectos introductorios
  2. ¿Qué es un chatbot?
  3. ¿Cómo funciona un chatbot?
  4. VoiceBots
  5. Desafios para los Chatbots
  1. Chatbots y el papel de la Inteligencia Artificial (IA)
  2. Usos y beneficios de los chatbots
  3. Diferencia entre bots, chatbots e IA
  1. Áreas de aplicación de Chatbots
  2. Desarrollo de un chatbot con ChatterBot y Python
  3. Desarrollo de un chatbot para Facebook Messenger con Chatfuel
  1. ¿Qué es Chat GPT?
  2. Cómo afecta la inteligencia artificial en Chat GPT?
  3. Versiones de Chat GPT y funcionalidades
  4. Usos de Chat GPT
  5. Beneficios de la IA y Chat GPT
  1. ¿Cómo funciona Chat GPT?
  2. Diferencias entre Chat GPT y otros chatbots
  3. Procesamiento del Lenguaje Natural (PLN)
  4. Aprendizaje por transferencia
  5. Cómo entrenar un modelo de Chat GPT
  1. Elección de la plataforma de desarrollo
  2. Configuración del entorno de desarrollo
  3. Preparación de los datos de entrenamiento
  4. Entrenamiento del modelo de Chat GPT
  5. Integración del modelo en el chatbot
  6. Pruebas y mejora del modelo
  1. Análisis de la conversación con el usuario
  2. Personalización de la conversación
  3. Uso de emojis y respuestas con imágenes
  4. Integración de voz y audio
  5. Respuestas multilingües
  1. Integración del chatbot en una página web
  2. Integración del chatbot en una aplicación móvil
  3. Personalización del aspecto del chatbot
  4. Gestión de la seguridad y privacidad del usuario
  1. Modelos de negocio para chatbots
  2. Monetización a través de publicidad
  3. Monetización a través de suscripciones
  4. Monetización a través de compras in-app
  5. Análisis del rendimiento y la rentabilidad
  1. Aspectos éticos y responsabilidad en la IA
  2. Sesgos en la IA y cómo evitarlos
  3. Derechos y privacidad del usuario
  4. Regulaciones y normativas sobre chatbots
  5. Responsabilidad social y ambiental
  1. Chatbots para atención al cliente
  2. Chatbots para servicios financieros
  3. Chatbots para servicios de salud
  4. Chatbots para educación
  5. Chatbots para entretenimiento y ocio
  1. Plataformas de desarrollo de Chatbots
  2. Librerías y frameworks para el desarrollo de IA
  3. Bases de datos y almacenamiento
  4. Recursos de formación y aprendizaje
  5. Comunidades y grupos de apoyo para desarrolladores
  1. Desarrollo de un Chatbot avanzado
  2. Caso de estudio en atención al cliente
  3. Caso de estudio en educación
  4. Caso de estudio en salud
  5. Caso de estudio en ocio
  1. Concepto e historia
  2. Bases de la robótica actual
  3. Plataformas móviles
  4. Crecimiento esperado en la industria robótica
  5. Límites de la robótica actual
  1. Robótica
  2. Inteligencia artificial
  3. Objetivos de la inteligencia artificial
  4. Historia de la inteligencia artificial
  5. Lenguaje de programación: el idioma de los robots
  6. Investigación y desarrollo en áreas de la inteligencia artificial
  7. Robótica y la inteligencia artificial
  1. Introducción
  2. Robótica y beneficios
  3. Robótica industrial
  4. Futuro de la robótica
  5. Robótica y las nuevas tecnologías
  6. Tendencias
  1. Evolución de la robótica
  2. Futuro de la robótica
  3. Robótica en la ingeniería e industria
  1. Inteligencia natural y artificial
  2. Inteligencia artificial y cibernética
  3. Autonomía en robótica
  4. Sistemas expertos
  5. Agentes virtuales con animación facial por ordenador
  6. Actualidad
  1. La robótica aplicada al ser humano: biónica
  2. Reseña histórica de las prótesis
  3. Diseño de prótesis en el siglo XX
  4. Investigaciones y desarrollo recientes en diseño de manos
  5. Sistemas protésicos
  6. Uso de materiales inteligentes en las prótesis
  1. Introducción
  2. Situación actual y tendencias para el futuro
  3. Objetivos
  4. Metodología y estructura
  1. Introducción, concepto y funciones de la estadística
  2. Estadística descriptiva
  3. Estadística inferencial
  4. Medición y escalas de medida
  5. Variables: clasificación y notación
  6. Distribución de frecuencias
  7. Representaciones gráficas
  8. Propiedades de la distribución de frecuencias
  9. Medidas de posición
  10. Medidas de dispersión
  11. Medidas de forma
  12. Curva de Lorenz, coeficiente de Gini e índice de Theil
  1. Introducción al análisis conjunto de variables
  2. Asociación entre dos variables cualitativas
  3. Correlación entre dos variables cuantitativas
  4. Regresión lineal
  1. Conceptos previos de probabilidad
  2. Variables discretas de probabilidad
  3. Distribuciones discretas de probabilidad
  4. Distribución normal
  5. Distribuciones asociadas a la distribución normal
  1. Conceptos previos
  2. Métodos de muestreo
  3. Principales indicadores
  1. Introducción a las hipótesis estadísticas
  2. Contraste de hipótesis
  3. Contraste de hipótesis paramétrico
  4. Tipologías de error
  5. Contrastes no paramétricos
  1. Introducción a los modelos de regresión
  2. Modelos de regresión: aplicabilidad
  3. Variables a introducir en el modelo de regresión
  4. Construcción del modelo de regresión
  5. Modelo de regresión lineal
  6. Modelo de regresión logística
  7. Factores de confusión
  8. Interpretación de los resultados de los modelos de regresión
  1. Estadística no paramétrica. Conceptos básicos
  2. Características de las pruebas
  3. Ventajas y desventajas del uso de métodos no paramétricos
  4. Identificación de las diferentes pruebas no paramétricas
  1. Pruebas no paramétricas para una muestra
  2. Chi-cuadrado o ji-cuadrado
  3. Prueba de Kolmogorov-Smirnov para una muestra
  4. Prueba binomial
  5. Prueba de rachas
  1. Prueba de los signos
  2. Prueba del rango con signo de Wilcoxon
  3. Prueba de McNemar
  1. Pruebas para k muestras relacionadas
  2. Prueba de Cochran
  3. Prueba de Friedman
  4. Coeficiente de concordancia de W de Kendall
  1. Pruebas para dos muestras independientes
  2. Prueba U de Mann Whitney
  3. Prueba de Wald-Wolfowitz
  4. Prueba de reacciones extremas de Moses
  5. Prueba de Kolmogorov-Smirnov para dos muestras
  1. Pruebas no paramétricas para K muestras independientes
  2. Prueba de la mediana
  3. Prueba H de Kruskal-Wallis
  4. Prueba de Jonckheere-Terpstra
  1. Descripción general OpenCV
  2. Instalación OpenCV para Python en Windows
  3. Instalación OpenCV para Python en Linux
  4. Anaconda y OpenCV
  1. Manejo de archivos
  2. Leer una imagen con OpenCV
  3. Mostrar imagen con OpenCV
  4. Guardar una imagen con OpenCV
  5. Operaciones aritméticas en imágenes usando OpenCV
  6. Funciones de dibujo
  1. Redimensión de imágenes
  2. Erosión de imágenes
  3. Desenfoque de imágenes
  4. Bordeado de imágenes
  5. Escala de grises en imágenes
  6. Escalado, rotación, desplazamiento y detección de bordes
  7. Erosión y dilatación de imágenes
  8. Umbrales simples
  9. Umbrales adaptativos
  10. Umbral de Otsu
  11. Contornos de imágenes
  12. Incrustación de imágenes
  13. Intensidad en imágenes
  14. Registro de imágenes
  15. Extracción de primer plano
  16. Operaciones morfológicas en imágenes
  17. Pirámide de imágen
  1. Analizar imágenes usando histogramas
  2. Ecualización de histogramas
  3. Template matching
  4. Detección de campos en documentos usando Template matching
  1. Espacios de color en OpenCV
  2. Cambio de espacio de color
  3. Filtrado de color
  4. Denoising de imágenes en color
  5. Visualizar una imagen en diferentes espacios de color
  1. Detección de líneas
  2. Detección de círculos
  3. Detectar esquinas (Método Shi-Tomasi)
  4. Detectar esquinas (método Harris)
  5. Encontrar círculos y elipses
  6. Detección de caras y sonrisas
  1. Vecino más cercano (K-Nearest Neighbour)
  2. Agrupamiento de K-medias (K-Means Clustering)

metodología

claustro

Claustro Docente

Ofrecerá un minucioso seguimiento al alumno, resolviendo sus dudas.

campus virtual

Formación Online

Toda nuestra oferta formativa es de modalidad online, incluidos los exámenes.

materiales didácticos

Comunidad

En la que todos los alumos de INESEM podrán debatir y compartir su conocimiento.

material adicional

Materiales Didácticos

En la mayoría de nuestras acciones formativas, el alumno contará con el apoyo de los materiales físicos.

Centro de atención al estudiante (CAE)

Material Adicional

El alumno podrá completar el proceso formativo y ampliar los conocimientos de cada área concreta.

inesem emplea

Campus Virtual

Entorno Persona de Aprendizaje disponible las 24 horas, los 7 días de la semana.

Una vez finalizado el proceso de matriculación, el alumno empieza su andadura en INESEM Formación Continua a través de nuestro Campus Virtual.

La metodología INESEM Business School, ha sido diseñada para acercar el aula al alumno dentro de la formación online. De esta forma es tan importante trabajar de forma activa en la plataforma, como necesario el trabajo autónomo de este. El alumno cuenta con una completa acción formativa que incluye además del contenido teórico, objetivos, mapas conceptuales, recuerdas, autoevaluaciones, bibliografía, exámenes, actividades prácticas y recursos en forma de documentos descargables, vídeos, material complementario, normativas, páginas web, etc.

A esta actividad en la plataforma hay que añadir el tiempo asociado a la formación dedicado a horas de estudio. Estos son unos completos libros de acceso ininterrumpido a lo largo de la trayectoria profesional de la persona, no solamente durante la formación. Según nuestra experiencia, gran parte del alumnado prefiere trabajar con ellos de manera alterna con la plataforma, si bien la realización de autoevaluaciones de cada unidad didáctica y evaluación de módulo, solamente se encuentra disponible de forma telemática.

El alumno deberá avanzar a lo largo de las unidades didácticas que constituyen el itinerario formativo, así como realizar las actividades y autoevaluaciones correspondientes. Al final del itinerario encontrará un examen final o exámenes. A fecha fin de la acción formativa el alumno deberá haber visitado al menos el 100 % de los contenidos, haber realizado al menos el 75 % de las actividades de autoevaluación, haber realizado al menos el 75 % de los exámenes propuestos y los tiempos de conexión alcanzados deberán sumar en torno al 75 % de las horas de la teleformación de su acción formativa. Dicho progreso se contabilizará a través de la plataforma virtual y puede ser consultado en cualquier momento.

La titulación será remitida al alumno por correo postal una vez se haya comprobado que ha completado el proceso de aprendizaje satisfactoriamente.

Requisitos de acceso

Esta formación pertenece al programa de Formación Continua de INESEM. Esta formación se tramita con cargo a un crédito que tienen asignado las empresas privadas españolas para la formación de sus empleados sin que les suponga un coste.

Para tramitar dicha formación es preciso cumplir los siguientes requisitos:

  • Estar trabajando para una empresa privada
  • Encontrarse cotizando en Régimen General de la Seguridad Social
  • Solicitar un curso que esté relacionado con el puesto de trabajo o con la actividad empresarial
  • Que la empresa autorice la formación
  • Que la empresa disponga de suficiente crédito formativo para cubrir el coste del curso

titulación

Titulación de Formación Continua Bonificada expedida por el Instituto Europeo de Estudios Empresariales (INESEM). Titulación Expedida y Avalada por el Instituto Europeo de Estudios Empresariales. "Enseñanza No Oficial y No Conducente a la Obtención de un Título con Carácter Oficial o Certificado de Profesionalidad."

Opiniones de los alumnos

TAMBIÉN PODRÍA INTERESARTE...
Cursos bonificados relacionados
Auditoría de Seguridad Informática (Online)
Hasta 100% bonificable
Técnico de Programación de Páginas Web con PHP (Servidor) (Online)
Hasta 100% bonificable
Curso Práctico de Virtuemart: Cómo crear una Tienda Virtual (Online)
Hasta 100% bonificable
¿Qué es Formación Continua?
POR QUÉ ESTUDIAR EN INESEM
Claustro especializado
Profesores especializados realizarán un seguimiento personalizado al alumno.
campus virtual
Acceso a la plataforma de aprendizaje disponible las 24 horas e ilimitado.
Gestión gratuita
Gestionamos todos los trámites administrativos para la bonificación de la formación.
materiales didácticos
Enviamos gratis los materiales de apoyo en la mayoría de nuestras acciones formativas (envíos a España).
planes formativos a medida
Diseñamos planes de formación adaptados a las necesidades de las empresas.
materiales adicionales
Los alumnos podrán profundizar más con material adicional que su docente le puede aportar.
amplio catálogo formativo
Contamos con más de 5000 cursos y masters bonificables para trabajadores.
Centro de atención al estudiante
Nuestros asesores académicos atenderán al alumnado antes, durante y después de la formación.
consultoría de recursos humanos
Ofrecemos soluciones para el área laboral de tu empresa.
secretaría virtual
Todas las gestiones las podrás hacer vía online, no será necesario hacerlo presencial.
INESEM en cifras
+150.000

alumnos

99%

de empleabilidad

+2.000

acuerdos con empresas

98%

de satisfacción

Universidades colaboradoras