Las acciones formativas de Formacioncontinua tienen modalidad online
Modalidad
ONLINE
Duración de las acciones formativas de formacioncontinua
Duración Total
1500 H
Duración de teleformación de las acciones formativas de formacioncontinua
Horas Teleformación
450 H
Precio de las acciones formativas de INESEM
Entidad
INESEM Business School
Presentación

Descripción
Este Máster en Machine Learning, Inteligencia Artificial y Big Data proporciona una formación integral en estas tecnologías disruptivas. Abarca desde los fundamentos teóricos hasta aplicaciones prácticas avanzadas, incluyendo la programación en Python y el uso de herramientas como TensorFlow y OpenCV. La formación no solo se enfoca en el desarrollo técnico, sino que también aborda aspectos éticos y de gobernanza, esenciales en el uso responsable de la inteligencia artificial. Al realizar este máster adquirirás las habilidades necesarias para diseñar, implementar y evaluar modelos de IA, preparar datos para el despliegue de modelos y comprender el impacto de la IA en diversos sectores, preparándolos para roles innovadores en la industria

Objetivos
  • Comprender los fundamentos de la inteligencia artificial.
  • Aprender a desarrollar sistemas expertos en C#.
  • Explorar la relación entre Big Data e IA.
  • Dominar el uso de Python para deep learning.
  • Implementar redes neuronales con TensorFlow.
  • Analizar el impacto ético de la IA.
  • Crear chatbots utilizando ChatterBot y Chatfuel.

Para qué te prepara
Este Máster en Machine Learning, Inteligencia Artificial y Big Data te prepara para diseñar, desarrollar y aplicar sistemas de IA y machine learning en diversos contextos. Aprenderás a programar con Python, usar librerías como TensorFlow y OpenCV e implementar soluciones de big data y deep learning. Además, podrás abordar los desafíos éticos y de gobernanza asociados con la IA y sus aplicaciones en PLN, programación o visión artificial.

A quién va dirigido
Este Máster en Machine Learning, Inteligencia Artificial y Big Data está dirigido a profesionales y personas graduadas en informática, ingeniería, matemáticas y campos afines que deseen especializarse en inteligencia artificial, machine learning y big data. También es adecuado para personas con experiencia en programación que buscan un campo en auge.

temario

  1. ¿Qué es Big Data?
  2. La era de las grandes cantidades de información. Historia del big data
  3. La importancia de almacenar y extraer información
  4. Big Data enfocado a los negocios
  5. Open Data
  6. Información pública
  7. IoT (Internet of Things-Internet de las cosas)
  1. Definición y relevancia de la selección de las fuentes de datos
  2. Naturaleza de las fuentes de datos Big Data
  1. Definición, Beneficios y Características
  2. Ejemplo de uso de Open Data
  1. Introducción a la minería de datos y el aprendizaje automático
  2. Proceso KDD
  3. Modelos y Técnicas de Data Mining
  4. Áreas de aplicación
  5. Minería de textos y Web Mining
  6. Data mining y marketing
  1. Analítica aumentada
  2. Beneficios y desafíos
  3. Herramientas y plataformas
  4. Escalabilidad e integración
  1. ¿Qué es Hadoop? Relación con Big Data
  2. Instalación y configuración de insfraestructura y ecosistema Hadoop
  3. Sistema de archivos HDFS
  4. MapReduce con Hadoop
  5. Apache Hive
  6. Apache Hue
  7. Apache Spark
  1. ¿Qué es Weka?
  2. Técnicas de Data Mining en Weka
  3. Interfaces de Weka
  4. Selección de atributos
  1. ¿Qué es la ciencia de datos?
  2. Herramientas necesarias para el científico de datos
  3. Data Science & Cloud Compunting
  4. Aspectos legales en Protección de Datos
  1. Introducción
  2. El modelo relacional
  3. Lenguaje de consulta SQL
  4. MySQL. Una base de datos relacional
  1. ¿Qué es una base de datos NoSQL?
  2. Bases de datos Relaciones Vs Bases de datos NoSQL
  3. Tipo de Bases de datos NoSQL. Teorema de CAP
  4. Sistemas de Bases de datos NoSQL
  1. ¿Qué es MongoDB?
  2. Funcionamiento y uso de MongoDB
  3. Primeros pasos con MongoDB. Instalación y shell de comandos
  4. Creando nuestra primera Base de Datos NoSQL.Modelo e Inserción de Datos
  5. Actualización de datos en MongoDB. Sentencias set y update
  6. Trabajando con índices en MongoDB para optimización de datos
  7. Consulta de datos en MongoDB
  1. Introducción a Python
  2. ¿Qué necesitas?
  3. Librerías para el análisis de datos en Python
  4. MongoDB, Hadoop y Python. Dream Team del Big Data
  1. Introducción a R
  2. ¿Qué necesitas?
  3. Tipos de datos
  4. Estadística Descriptiva y Predictiva con R
  5. Integración de R en Hadoop
  1. Obtención y limpieza de los datos (ETL)
  2. Inferencia estadística
  3. Modelos de regresión
  4. Pruebas de hipótesis
  1. Inteligencia Analítica de negocios
  2. La teoría de grafos y el análisis de redes sociales
  3. Presentación de resultados
  1. Cómo usar loc en Pandas
  2. Cómo eliminar una columna en Pandas
  1. Pivot tables en pandas
  1. Python Pandas fusionando marcos de datos
  1. Algortimo de Naive bayes
  2. Tipos de Naive Bayes
  1. Máquinas de vectores soporte (Support Vector Machine-SVM)
  2. ¿Cómo funciona SVM?
  3. Núcleos SVM
  4. Construcción de clasificador en Scikit-learn
  1. K-nearest Neighbors (KNN)
  2. Implementación de Python del algoritmo KNN
  1. Algorimto de Random Forest
  1. ¿Qué es la visualización de datos?
  2. Importancia y herramientas de la visualización de datos
  3. Visualización de datos: Principios básicos
  1. Introducción a Power BI
  2. Instalación de Power BI
  3. Modelado de datos
  4. Visualización de datos
  5. Dashboards
  6. Uso compartido de datos
  1. ¿Qué es Tableau? Usos y aplicaciones
  2. Tableau Server: Arquitectura y Componentes
  3. Instalación Tableau
  4. Espacio de trabajo y navegación
  5. Conexiones de datos en Tableau
  6. Tipos de filtros en Tableau
  7. Ordenación de datos, grupos, jerarquías y conjuntos
  8. Tablas y gráficos en Tableau
  1. Fundamentos D3
  2. Instalación D3
  3. Funcionamiento D3
  4. SVG
  5. Tipos de datos en D3
  6. Diagrama de barras con D3
  7. Diagrama de dispersión con D3
  1. Looker Studio
  2. Acceder a Looker Studio
  3. Informes
  4. Tipologías de gráficos
  5. Personalización de informes
  1. Instalación y arquitectura
  2. Carga de datos
  3. Informes
  4. Transformación y modelo de datos
  5. Análisis de datos
  1. Google Charts
  2. Preparación de datos
  3. Incluir la librería de Google Charts
  4. Ejemplo básico de Google Chart
  1. ¿Qué es ChartBlocks?
  2. Registro y acceso
  3. Creación de gráficos
  4. Personalización de gráficos
  5. Compartir y descargar el gráfico
  1. ¿Qué es Infogram?
  2. Creación de una cuenta en Infogram
  3. Interfaz de usuario de Infogram
  4. Creación de infografías
  5. Publicación y compartición de proyectos
  1. ¿Qué es Leaflet?
  2. Configuración inicial
  3. Creación de un mapa básico
  4. Marcadores
  5. Capas
  1. Introducción a la inteligencia artificial
  2. Historia
  3. La importancia de la IA
  1. Algoritmos aplicados a la inteligencia artificial
  1. Relación entre inteligencia artificial y big data
  2. IA y Big Data combinados
  3. El papel del Big Data en IA
  4. Tecnologías de IA que se están utilizando con Big Data
  1. Sistemas expertos
  2. Estructura de un sistema experto
  3. Fases de construcción de un sistema
  4. Rendimiento y mejoras
  5. Dominios de aplicación
  6. Creación de un sistema experto en C#
  7. Añadir incertidumbre y probabilidades
  1. Futuro de la inteligencia artificial
  2. Impacto de la IA en la industria
  3. El impacto económico y social global de la IA y su futuro
  1. Introducción
  2. Clasificación de algoritmos de aprendizaje automático
  3. Ejemplos de aprendizaje automático
  4. Diferencias entre el aprendizaje automático y el aprendizaje profundo
  5. Tipos de algoritmos de aprendizaje automático
  6. El futuro del aprendizaje automático
  1. Introducción
  2. Filtrado colaborativo
  3. Clusterización
  4. Sistemas de recomendación híbridos
  1. Clasificadores
  2. Algoritmos
  1. Introducción
  2. El proceso de paso de DSS a IDSS
  3. Casos de aplicación
  1. Aprendizaje profundo
  2. Entorno de Deep Learning con Python
  3. Aprendizaje automático y profundo
  1. Redes neuronales
  2. Redes profundas y redes poco profundas
  1. Perceptrón de una capa y multicapa
  2. Ejemplo de perceptrón
  1. Entrada y salida de datos
  2. Entrenar una red neuronal
  3. Gráficos computacionales
  4. Implementación de una red profunda
  5. El algoritmo de propagación directa
  6. Redes neuronales profundas multicapa
  1. Ética normativa y ética aplicada
  2. Historia y caracteres de la ética de la inteligencia artificial
  3. Ética realista y ética ficción
  4. Inteligencia artificial como objeto y sujeto
  5. Singularidad tecnológica y futuro de la especie humana
  6. Machine ethics. Nuevos entes autónomos y estatus moral
  7. Controversias éticas de la aplicación de la inteligencia artificial
  8. Bioética e inteligencia artificial
  9. Democracia e inteligencia artificial
  1. Gobernanza como sistema de prevención y control de riesgos en la inteligencia artificial
  2. Papel de la UE en la gobernanza de la inteligencia artificial
  3. Evaluaciones de impacto social, ético y legal de inteligencia artificial de alto riesgo
  4. Elaboración de un plan de gobernanza
  1. Principios de la inteligencia artificial responsable
  2. Aspectos de diseño éticos para Machine Learning
  3. Inteligencia artificial explicable (XAI). Hacia la IA responsable
  4. Imparcialidad de Datos (Fairness). Control del sesgo en los modelos
  5. Escenarios con modelos de IA de alto riesgo
  6. Auditabilidad en los sistemas de inteligencia artificial
  7. Sandbox normativo piloto del futuro reglamentario de IA en España
  8. Transparencia en modelos de Machine Learning
  9. Análisis de herramientas software para medir la imparcialidad
  1. Metodología de la ética en la inteligencia artificial
  2. Agentes artificiales morales
  3. Moralidad artificial desde un enfoque funcionalista
  4. Objeciones acerca de agencias morales artificiales
  5. Responsabilidad y Derechos de los robots
  1. Introducción a la filosofía política de la inteligencia artificial
  2. Empleo e inteligencia artificial
  3. Relaciones humanas e inteligencia artificial
  4. Funciones de los Estados e inteligencia artificial
  5. Educación e inteligencia artificial
  6. Salud e inteligencia artificial
  7. Movilidad e inteligencia artificial
  8. Articulación entre ética y política sobre la inteligencia artificial
  9. Globalización e inteligencia artificial
  1. Digitalización al servicio de los Objetivos de Desarrollo Sostenible (ODS)
  2. Estrategia Europea de transición hacia una economía sostenible
  3. Cambio climático global
  4. Mejora de eficiencia en procesos organizativos con IA
  5. Mejora de eficiencia en prácticas individuales con IA
  6. Ética ambiental e inteligencia artificial
  1. Armas autónomas
  2. Intervenciones militares teledirigidas
  3. Ética de la guerra
  1. El metaverso
  2. Gemelos digitales humanos
  3. Creación de universos paralelos en 3D
  1. Sistemas autónomos en el ámbito laboral
  2. Inteligencia artificial para la mejora de calidad de vida en ciudades. Mejora del impacto medioambiental
  3. Combinación de smart cities, internet de las cosas y big data
  4. Inteligencia artificial y cuidado personal y sexual
  5. Análisis ético de la incorporación de la robótica en la vida humana
  1. Inteligencia artificial para restaurar funciones físicas y cognitivas deterioradas
  2. Optimizar las capacidades humanas con inteligencia artificial
  3. Debate académico sobre transhumanismo y poshumanismo
  1. ¿Qué es PLN?
  2. ¿Qué incluye el PLN?
  3. Ejemplos de uso de PLN
  4. Futuro del PLN
  1. PLN en Python con la librería NLTK
  2. Otras herramientas para PLN
  1. Principios del análisis sintáctico
  2. Gramática libre de contexto
  3. Analizadores sintácticos (Parsers)
  1. Aspectos introductorios del análisis semántico
  2. Lenguaje semántico para PLN
  3. Análisis pragmático
  1. Aspectos introductorios
  2. Pasos en la extracción de información
  3. Ejemplo PLN
  4. Ejemplo PLN con entrada de texto en inglés
  1. Aspectos introductorios
  2. ¿Qué es un chatbot?
  3. ¿Cómo funciona un chatbot?
  4. VoiceBots
  5. Desafios para los Chatbots
  1. Chatbots y el papel de la Inteligencia Artificial (IA)
  2. Usos y beneficios de los chatbots
  3. Diferencia entre bots, chatbots e IA
  1. Áreas de aplicación de Chatbots
  2. Desarrollo de un chatbot con ChatterBot y Python
  3. Desarrollo de un chatbot para Facebook Messenger con Chatfuel
  1. Aprendizaje Automático
  2. Tipos de aprendizaje automático
  3. Algoritmos y modelos de aprendizaje automático
  4. Métricas de evalución en aprendizaje automático
  5. Regularización y selección de características en aprendizaje automático
  1. Redes Neuronales Artificiales (RNA)
  2. Estructura y arquitectura
  3. Funciones de activación
  4. Entrenamiento de las RNA
  5. Redes Neuronales Convolucionales (CNN) y su aplicación
  6. Redes Neuronales Recurrentes (RNN) y su aplicación
  7. Redes Neuronales Adversariales (GAN) y su aplicación
  1. Fundamentos del Procesamiento del Lenguaje Natural (PLN)
  2. Representación del lenguaje en PLN
  3. Extracción de características en PLN
  4. Modelos de PLN basados en secuencias
  5. Modelos de PLN para tareas específicas
  6. Aplicaciones de PLN
  1. Visión artificial
  2. Preprocesamiento y transformación de imágenes
  3. Detección y reconocimiento de objetos
  4. Segmentación y clasificación de imágenes
  5. Aplicaciones de visión artificial
  1. Big Data en Inteligencia Artificial
  2. Almacenamiento y procesamiento distribuido
  3. Tecnologías y herramientas para el procesamiento de Big Data
  4. Extracción de conocimiento a partir de datos masivos
  5. Aprendizaje automático en Big Data
  1. Evaluación de modelos y métricas de rendimiento
  2. Optimización de hiperparámetros
  3. Regularización y técnicas de prevención de sobreajuste
  4. Técnicas de reducción de dimensionalidad
  5. Ajuste y ensamblado de modelos
  1. Aprendizaje por refuerzo
  2. Agentes y entornos de aprendizaje por refuerzo
  3. Métdos de aprendizaje por refuerzo
  4. Exploración y explotación en aprendizaje por refuerzo
  5. Aplicaciones de aprendizaje por refuerzo
  1. Preparación de datos para despliegue de modelos
  2. Diseño e implementación de servicios de IA
  3. Monitoreo y evaluación de modelos en producción
  4. Actualización y mantenimiento de modelos de IA
  5. Escalabilidad y rendimiento en despliegue de modelos de IA
  1. Descripción general OpenCV
  2. Instalación OpenCV para Python en Windows
  3. Instalación OpenCV para Python en Linux
  4. Anaconda y OpenCV
  1. Manejo de archivos
  2. Leer una imagen con OpenCV
  3. Mostrar imagen con OpenCV
  4. Guardar una imagen con OpenCV
  5. Operaciones aritméticas en imágenes usando OpenCV
  6. Funciones de dibujo
  1. Redimensión de imágenes
  2. Erosión de imágenes
  3. Desenfoque de imágenes
  4. Bordeado de imágenes
  5. Escala de grises en imágenes
  6. Escalado, rotación, desplazamiento y detección de bordes
  7. Erosión y dilatación de imágenes
  8. Umbrales simples
  9. Umbrales adaptativos
  10. Umbral de Otsu
  11. Contornos de imágenes
  12. Incrustación de imágenes
  13. Intensidad en imágenes
  14. Registro de imágenes
  15. Extracción de primer plano
  16. Operaciones morfológicas en imágenes
  17. Pirámide de imágen
  1. Analizar imágenes usando histogramas
  2. Ecualización de histogramas
  3. Template matching
  4. Detección de campos en documentos usando Template matching
  1. Espacios de color en OpenCV
  2. Cambio de espacio de color
  3. Filtrado de color
  4. Denoising de imágenes en color
  5. Visualizar una imagen en diferentes espacios de color
  1. Detección de líneas
  2. Detección de círculos
  3. Detectar esquinas (Método Shi-Tomasi)
  4. Detectar esquinas (método Harris)
  5. Encontrar círculos y elipses
  6. Detección de caras y sonrisas
  1. Vecino más cercano (K-Nearest Neighbour)
  2. Agrupamiento de K-medias (K-Means Clustering)

metodología

claustro

Claustro Docente

Ofrecerá un minucioso seguimiento al alumno, resolviendo sus dudas.

campus virtual

Formación Online

Toda nuestra oferta formativa es de modalidad online, incluidos los exámenes.

materiales didácticos

Comunidad

En la que todos los alumos de INESEM podrán debatir y compartir su conocimiento.

material adicional

Materiales Didácticos

En la mayoría de nuestras acciones formativas, el alumno contará con el apoyo de los materiales físicos.

Centro de atención al estudiante (CAE)

Material Adicional

El alumno podrá completar el proceso formativo y ampliar los conocimientos de cada área concreta.

inesem emplea

Campus Virtual

Entorno Persona de Aprendizaje disponible las 24 horas, los 7 días de la semana.

Una vez finalizado el proceso de matriculación, el alumno empieza su andadura en INESEM Formación Continua a través de nuestro Campus Virtual.

La metodología INESEM Business School, ha sido diseñada para acercar el aula al alumno dentro de la formación online. De esta forma es tan importante trabajar de forma activa en la plataforma, como necesario el trabajo autónomo de este. El alumno cuenta con una completa acción formativa que incluye además del contenido teórico, objetivos, mapas conceptuales, recuerdas, autoevaluaciones, bibliografía, exámenes, actividades prácticas y recursos en forma de documentos descargables, vídeos, material complementario, normativas, páginas web, etc.

A esta actividad en la plataforma hay que añadir el tiempo asociado a la formación dedicado a horas de estudio. Estos son unos completos libros de acceso ininterrumpido a lo largo de la trayectoria profesional de la persona, no solamente durante la formación. Según nuestra experiencia, gran parte del alumnado prefiere trabajar con ellos de manera alterna con la plataforma, si bien la realización de autoevaluaciones de cada unidad didáctica y evaluación de módulo, solamente se encuentra disponible de forma telemática.

El alumno deberá avanzar a lo largo de las unidades didácticas que constituyen el itinerario formativo, así como realizar las actividades y autoevaluaciones correspondientes. Al final del itinerario encontrará un examen final o exámenes. A fecha fin de la acción formativa el alumno deberá haber visitado al menos el 100 % de los contenidos, haber realizado al menos el 75 % de las actividades de autoevaluación, haber realizado al menos el 75 % de los exámenes propuestos y los tiempos de conexión alcanzados deberán sumar en torno al 75 % de las horas de la teleformación de su acción formativa. Dicho progreso se contabilizará a través de la plataforma virtual y puede ser consultado en cualquier momento.

La titulación será remitida al alumno por correo postal una vez se haya comprobado que ha completado el proceso de aprendizaje satisfactoriamente.

Requisitos de acceso

Esta formación pertenece al programa de Formación Continua de INESEM. Esta formación se tramita con cargo a un crédito que tienen asignado las empresas privadas españolas para la formación de sus empleados sin que les suponga un coste.

Para tramitar dicha formación es preciso cumplir los siguientes requisitos:

  • Estar trabajando para una empresa privada
  • Encontrarse cotizando en Régimen General de la Seguridad Social
  • Solicitar un curso que esté relacionado con el puesto de trabajo o con la actividad empresarial
  • Que la empresa autorice la formación
  • Que la empresa disponga de suficiente crédito formativo para cubrir el coste del curso

titulación

Titulación de Formación Continua Bonificada expedida por el Instituto Europeo de Estudios Empresariales (INESEM). Titulación Expedida y Avalada por el Instituto Europeo de Estudios Empresariales “Enseñanza no oficial y no conducente a la obtención de un título con carácter oficial o certificado de profesionalidad.”

Opiniones de los alumnos

TAMBIÉN PODRÍA INTERESARTE...
Cursos bonificados relacionados
Curso de Administración de CRM
Hasta 100% bonificable
Técnico en Gestores de Datos y de la Información
Hasta 100% bonificable
Administración de Bases de Datos (Online)
Hasta 100% bonificable
¿Qué es Formación Continua?
POR QUÉ ESTUDIAR EN INESEM
Claustro especializado
Profesores especializados realizarán un seguimiento personalizado al alumno.
campus virtual
Acceso a la plataforma de aprendizaje disponible las 24 horas e ilimitado.
Gestión gratuita
Gestionamos todos los trámites administrativos para la bonificación de la formación.
materiales didácticos
Enviamos gratis los materiales de apoyo en la mayoría de nuestras acciones formativas (envíos a España).
planes formativos a medida
Diseñamos planes de formación adaptados a las necesidades de las empresas.
materiales adicionales
Los alumnos podrán profundizar más con material adicional que su docente le puede aportar.
amplio catálogo formativo
Contamos con más de 5000 cursos y masters bonificables para trabajadores.
Centro de atención al estudiante
Nuestros asesores académicos atenderán al alumnado antes, durante y después de la formación.
consultoría de recursos humanos
Ofrecemos soluciones para el área laboral de tu empresa.
secretaría virtual
Todas las gestiones las podrás hacer vía online, no será necesario hacerlo presencial.
INESEM en cifras
Trabajamos para ser tu mejor opción
Miles de alumnos han pasado por nuestras aulas virtuales, muchos de los cuales han vuelto a elegirnos para continuar formándose y desarrollándose profesionalmente. Los cursos bonificados para trabajadores de INESEM son tu mejor opción.

formando a profesionales en distintos ámbitos laborales

se han formado con nosotros

a tu disposición antes, durante y después de la formación

han colaborado con nosotros

personalizados y especializados en empresas de diferentes sectores

Actualizamos nuestros contenidos cada año

Hemos recibido más de 20.000 positivas

El 92% de nuestro alumnado repite

Universidades colaboradoras